If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=333
We move all terms to the left:
3x^2-(333)=0
a = 3; b = 0; c = -333;
Δ = b2-4ac
Δ = 02-4·3·(-333)
Δ = 3996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3996}=\sqrt{36*111}=\sqrt{36}*\sqrt{111}=6\sqrt{111}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{111}}{2*3}=\frac{0-6\sqrt{111}}{6} =-\frac{6\sqrt{111}}{6} =-\sqrt{111} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{111}}{2*3}=\frac{0+6\sqrt{111}}{6} =\frac{6\sqrt{111}}{6} =\sqrt{111} $
| 5x+25=10/x | | 8x+6=3x-22 | | 13n=100+3n | | 23x=-6-7x^ | | 7x/6-3x/6=230 | | 7y-5=10 | | 1÷4a-12=5÷4a+6 | | -6-3w=-11w-19-3 | | j+8=-17 | | 16=-4(r+3)+8(8-r) | | 2(4x+4)=-20x-12(x-2) | | -2(8m+16)=-16 | | -37+7+x=12x63 | | n.5n+34=-2(1-7n) | | 3y²=—4y+16 | | 2x-19=6x-43 | | 8(b+1)-2(5b+3)=-8 | | 2(m+3)=(m-1) | | 4x-12=-6x+48 | | 6x+2=5x+-2 | | 4(x+6)=3(2x+10) | | -3(m+8)-6m=-16-8m | | x/9+9=18 | | 17+4(x+1)=25 | | f-6=18-3f | | -6-(-6+7n)=-7n-5 | | 11x-11=11(14)-11 | | 10+10=-4{6x-5} | | -17+17h=4-3+16h | | p/4=10/8 | | 6(x-3)+5=6x+5 | | -6x-7(8x+4)=2x=36 |